
MATH 245 S20, Exam 2 Solutions

1. Carefully define the following terms: Proof by Cases Theorem, Nonconstructive Existence
Theorem, Proof by Reindexed Induction
The Proof by Cases theorem says: Let p, q be propositions. Suppose there are propo-
sitions c1, c2, . . . , ck with c1 ∨ c2 ∨ · · · ∨ ck ≡ T . Now, if (p∧ c1)→ q, (p∧ c2)→ q, . . . ,
(p∧ ck)→ q are all true, then p→ q is true. The Nonconstructive Existence Theorem
says: If ∀x ∈ D, ¬P (x) ≡ F , then ∃x ∈ D, P (x) is true. To prove ∀x ∈ N, P (x) by
reindexed induction, we must (a) prove P (1) is true; and (b) prove ∀x ∈ N with x ≥ 2,
P (x− 1)→ P (x).

2. Carefully define the following terms: Proof by Minimum Element Induction Thm, well-
ordered, big O
The Proof by Minimum Element Induction Theorem says: Let S be a nonempty set
of integers. If S has a lower bound, then it has a minimum. Let S be a set of numbers
with some ordering <. We say that S is well-ordered by < if every nonempty subset of
S has a minimum according to <. Let an and bn be sequences. We say that an = O(bn)
if ∃n0 ∈ N, ∃M ∈ R, ∀n ≥ n0, |an| ≤M |bn|.

3. Let x ∈ R. Use cases to prove that |x− 2|+ |x− 5| ≥ 3.

Case 1: If x < 2, then |x−2|+|x−5| = 2−x+5−x = 7−2x. We multiply x < 2 by −2
to get−2x > −4, and add 7 to get 7−2x > 7−4 = 3. Hence |x−2|+|x−5| = 7−2x > 3.

Case 2: If 2 ≤ x ≤ 5, then |x− 2|+ |x− 5| = x− 2 + 5− x = 3 ≥ 3.

Case 3: If x > 5, then |x−2|+|x−5| = x−2+x−5 = 2x−7. We multiply x > 5 by 2 to
get 2x > 10, and add −7 to get 2x−7 > 10−7 = 3. Hence, |x−2|+|x−5| = 2x−7 > 3.

In all three cases, the desired inequality holds.

4. Prove that ∀x ∈ R, b−xc = −dxe.
Let x ∈ R be arbitrary. Applying the definitions of ceiling and floor, we get b−xc ≤
−x < b−xc + 1 and dxe − 1 < x ≤ dxe. We multiply the latter by −1 to get
−dxe+ 1 > −x ≥ −dxe. We now have a choice for how to continue.

SOLUTION 1: We combine inequalities to get b−xc ≤ −x < −dxe + 1 and −dxe ≤
−x < b−xc + 1. Hence −dxe − 1 < b−xc < −dxe + 1. Since these are integers, by
Thm. 1.12, we have b−xc = −dxe.
SOLUTION 2: Both b−xc and −dxe are integers satisfying n ≤ −x < n + 1. Because
the floor of any real x is unique (by a theorem proved in class, part of the definition
of “floor”), these integers must be equal.

5. Use induction to prove that for all n ∈ N,
(
2n
n

)
≤ 4n.

Proof by vanilla induction. Base case n = 1:
(
2n
n

)
=
(
2
1

)
= 2!

1!1!
= 2, which is less than

4n = 4.



Now, let n ∈ N and suppose that
(
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n

)
≤ 4n. We have

(
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)
= (2n+2)!

(n+1)!(n+1)!
=

(2n+2)(2n+1)(2n)!
(n+1)n!(n+1)n!

= (2n+2)(2n+1)
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(
2n
n

)
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(n+1)(n+1)

(
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= 2(n+1)2(n+1)

(n+1)(n+1)
4n = 4n+1. Hence(

2(n+1)
(n+1)

)
≤ 4n+1.

6. Solve the recurrence with initial conditions a0 = 1, a1 = 4 and relation an = 3an−1−2an−2

(n ≥ 2).

Our characteristic polynomial is r2 − 3r + 2 = (r − 2)(r − 1), so the general solu-
tion is an = A2n + B1n = A2n + B. We now apply the initial conditions to get
1 = a0 = A20 + B = A + B and 4 = a1 = A21 + B = 2A + B. We now solve the
system {A + B = 1, 2A + B = 4} to get A = 3, B = −2. Hence the specific solution is
an = 3 · 2n − 2.

7. Consider the nonstandard order ≺ on Z given by 0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ 3 ≺ · · · .
The smallest element is 0, the second smallest is 1. Find a formula for the nth smallest
element.

The nth smallest element is

{
n/2 n is even

(1− n)/2 n is odd
.

One can avoid cases, at the expense of a messier formula, e.g.
⌈
n(−1)n

2

⌉
or (−1)nbn

2
c.

8. Consider the sequence an = 3n2 + 100n + 1. Prove that an = Θ(n2).

We need to prove both an = O(n2) (harder) and an = Ω(n2) (easier).

an = O(n2): Take n0 = 100,M = 5. Let n ≥ n0 = 100. We have |an| = |3n2 + 100n +
1| = 3n2 + 100n + 1 ≤ 3n2 + n2 + n2 = 5n2 = M |bn|.
an = Ω(n2): Take n0 = 1,M = 1. Let n ≥ n0 = 1. We have M |an| = 1|3n2+100n+1| =
3n2 + 100n + 1 ≥ n2 = |bn|.

9. Prove that ∀n ∈ N0, the Fibonacci numbers Fn satisfy Fn < 1.9n.

Proof by strong induction. We need two base cases: F0 = 0 < 1 = 1.90, and
F1 = 1 < 1.91.

Now, let n ∈ N0, and assume that Fn < 1.9n and Fn+1 < 1.9n+1. We have Fn+2 =
Fn+1 + Fn < 1.9n+1 + 1.9n = 1.9n(1.9 + 1) = 1.9n(2.9) < 1.9n(3.61) = 1.9n(1.9)2 =
1.9n+2. Hence Fn+2 < 1.9n+2.

10. Find a recurrence relation for sequence Tn such that the Master Theorem would give
Tn = Θ(

√
n log n). Describe an algorithm that would satisfy your recurrence relation.

The form of the solution can only arise in the “middle cn” case. Hence, k = d = 1/2.
Hence logb a = 1/2 and cn = Θ(

√
n). One possibility is a = 2, b = 4, cn =

√
n, which

gives Tn = 2Tn/4 +
√
n. An algorithm that satisfies this recurrence relation would

divide the size n problem into four parts, call itself recursively on two of the parts, and
have an overhead of

√
n putting those two results together.


