MATH 245 S20, Exam 2 Solutions

1. Carefully define the following terms: Proof by Cases Theorem, Nonconstructive Existence Theorem, Proof by Reindexed Induction

The Proof by Cases theorem says: Let p, q be propositions. Suppose there are propositions c_1, c_2, \ldots, c_k with $c_1 \lor c_2 \lor \cdots \lor c_k \equiv T$. Now, if $(p \land c_1) \to q, (p \land c_2) \to q, \ldots, (p \land c_k) \to q$ are all true, then $p \to q$ is true. The Nonconstructive Existence Theorem says: If $\forall x \in D, \neg P(x) \equiv F$, then $\exists x \in D, P(x)$ is true. To prove $\forall x \in \mathbb{N}, P(x)$ by reindexed induction, we must (a) prove P(1) is true; and (b) prove $\forall x \in \mathbb{N}$ with $x \ge 2$, $P(x-1) \to P(x)$.

2. Carefully define the following terms: Proof by Minimum Element Induction Thm, wellordered, big O

The Proof by Minimum Element Induction Theorem says: Let S be a nonempty set of integers. If S has a lower bound, then it has a minimum. Let S be a set of numbers with some ordering <. We say that S is well-ordered by < if every nonempty subset of S has a minimum according to <. Let a_n and b_n be sequences. We say that $a_n = O(b_n)$ if $\exists n_0 \in \mathbb{N}, \ \exists M \in \mathbb{R}, \ \forall n \geq n_0, \ |a_n| \leq M |b_n|$.

- 3. Let $x \in \mathbb{R}$. Use cases to prove that $|x-2| + |x-5| \ge 3$. Case 1: If x < 2, then |x-2| + |x-5| = 2 - x + 5 - x = 7 - 2x. We multiply x < 2 by -2 to get -2x > -4, and add 7 to get 7 - 2x > 7 - 4 = 3. Hence |x-2| + |x-5| = 7 - 2x > 3. Case 2: If $2 \le x \le 5$, then $|x-2| + |x-5| = x - 2 + 5 - x = 3 \ge 3$. Case 3: If x > 5, then |x-2| + |x-5| = x - 2 + x - 5 = 2x - 7. We multiply x > 5 by 2 to get 2x > 10, and add -7 to get 2x - 7 > 10 - 7 = 3. Hence, |x-2| + |x-5| = 2x - 7 > 3. In all three cases, the desired inequality holds.
- 4. Prove that $\forall x \in \mathbb{R}, |-x| = -\lceil x \rceil$.

Let $x \in \mathbb{R}$ be arbitrary. Applying the definitions of ceiling and floor, we get $\lfloor -x \rfloor \leq -x < \lfloor -x \rfloor + 1$ and $\lceil x \rceil - 1 < x \leq \lceil x \rceil$. We multiply the latter by -1 to get $-\lceil x \rceil + 1 > -x \geq -\lceil x \rceil$. We now have a choice for how to continue.

SOLUTION 1: We combine inequalities to get $\lfloor -x \rfloor \leq -x < -\lceil x \rceil + 1$ and $-\lceil x \rceil \leq -x < \lfloor -x \rfloor + 1$. Hence $-\lceil x \rceil - 1 < \lfloor -x \rfloor < -\lceil x \rceil + 1$. Since these are integers, by Thm. 1.12, we have $\lfloor -x \rfloor = -\lceil x \rceil$.

SOLUTION 2: Both $\lfloor -x \rfloor$ and $-\lceil x \rceil$ are integers satisfying $n \leq -x < n+1$. Because the floor of any real x is unique (by a theorem proved in class, part of the definition of "floor"), these integers must be equal.

5. Use induction to prove that for all $n \in \mathbb{N}$, $\binom{2n}{n} \leq 4^n$. Proof by vanilla induction. Base case n = 1: $\binom{2n}{n} = \binom{2}{1} = \frac{2!}{1!1!} = 2$, which is less than $4^n = 4$. Now, let $n \in \mathbb{N}$ and suppose that $\binom{2n}{n} \leq 4^n$. We have $\binom{2(n+1)}{(n+1)} = \frac{(2n+2)!}{(n+1)!(n+1)!} = \frac{(2n+2)(2n+1)}{(n+1)!(n+1)n!} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} \binom{2n}{n} < \frac{(2n+2)(2n+2)}{(n+1)(n+1)} \binom{2n}{n} = \frac{2(n+1)2(n+1)}{(n+1)(n+1)} 4^n = 4^{n+1}$. Hence $\binom{2(n+1)}{(n+1)(n+1)} \leq 4^{n+1}$.

6. Solve the recurrence with initial conditions $a_0 = 1$, $a_1 = 4$ and relation $a_n = 3a_{n-1} - 2a_{n-2}$ $(n \ge 2)$.

Our characteristic polynomial is $r^2 - 3r + 2 = (r - 2)(r - 1)$, so the general solution is $a_n = A2^n + B1^n = A2^n + B$. We now apply the initial conditions to get $1 = a_0 = A2^0 + B = A + B$ and $4 = a_1 = A2^1 + B = 2A + B$. We now solve the system $\{A + B = 1, 2A + B = 4\}$ to get A = 3, B = -2. Hence the specific solution is $a_n = 3 \cdot 2^n - 2$.

7. Consider the nonstandard order \prec on \mathbb{Z} given by $0 \prec 1 \prec -1 \prec 2 \prec -2 \prec 3 \prec \cdots$. The smallest element is 0, the second smallest is 1. Find a formula for the n^{th} smallest element.

The n^{th} smallest element is $\begin{cases} n/2 & n \text{ is even} \\ (1-n)/2 & n \text{ is odd} \end{cases}$.

One can avoid cases, at the expense of a messier formula, e.g. $\left\lceil \frac{n(-1)^n}{2} \right\rceil$ or $(-1)^n \lfloor \frac{n}{2} \rfloor$.

8. Consider the sequence $a_n = 3n^2 + 100n + 1$. Prove that $a_n = \Theta(n^2)$. We need to prove both $a_n = O(n^2)$ (harder) and $a_n = \Omega(n^2)$ (easier).

 $a_n = O(n^2)$: Take $n_0 = 100, M = 5$. Let $n \ge n_0 = 100$. We have $|a_n| = |3n^2 + 100n + 1| = 3n^2 + 100n + 1 \le 3n^2 + n^2 + n^2 = 5n^2 = M|b_n|$.

 $a_n = \Omega(n^2)$: Take $n_0 = 1, M = 1$. Let $n \ge n_0 = 1$. We have $M|a_n| = 1|3n^2 + 100n + 1| = 3n^2 + 100n + 1 \ge n^2 = |b_n|$.

9. Prove that $\forall n \in \mathbb{N}_0$, the Fibonacci numbers F_n satisfy $F_n < 1.9^n$. Proof by strong induction. We need two base cases: $F_0 = 0 < 1 = 1.9^0$, and $F_1 = 1 < 1.9^1$.

Now, let $n \in \mathbb{N}_0$, and assume that $F_n < 1.9^n$ and $F_{n+1} < 1.9^{n+1}$. We have $F_{n+2} = F_{n+1} + F_n < 1.9^{n+1} + 1.9^n = 1.9^n (1.9 + 1) = 1.9^n (2.9) < 1.9^n (3.61) = 1.9^n (1.9)^2 = 1.9^{n+2}$. Hence $F_{n+2} < 1.9^{n+2}$.

10. Find a recurrence relation for sequence T_n such that the Master Theorem would give $T_n = \Theta(\sqrt{n} \log n)$. Describe an algorithm that would satisfy your recurrence relation. The form of the solution can only arise in the "middle c_n " case. Hence, k = d = 1/2. Hence $\log_b a = 1/2$ and $c_n = \Theta(\sqrt{n})$. One possibility is $a = 2, b = 4, c_n = \sqrt{n}$, which gives $T_n = 2T_{n/4} + \sqrt{n}$. An algorithm that satisfies this recurrence relation would divide the size n problem into four parts, call itself recursively on two of the parts, and have an overhead of \sqrt{n} putting those two results together.