MATH 245 S20, Exam 2 Solutions

1. Carefully define the following terms: Proof by Cases Theorem, Nonconstructive Existence Theorem, Proof by Reindexed Induction
The Proof by Cases theorem says: Let p, q be propositions. Suppose there are propositions $c_{1}, c_{2}, \ldots, c_{k}$ with $c_{1} \vee c_{2} \vee \cdots \vee c_{k} \equiv T$. Now, if $\left(p \wedge c_{1}\right) \rightarrow q,\left(p \wedge c_{2}\right) \rightarrow q, \ldots$, $\left(p \wedge c_{k}\right) \rightarrow q$ are all true, then $p \rightarrow q$ is true. The Nonconstructive Existence Theorem says: If $\forall x \in D, \neg P(x) \equiv F$, then $\exists x \in D, P(x)$ is true. To prove $\forall x \in \mathbb{N}, P(x)$ by reindexed induction, we must (a) prove $P(1)$ is true; and (b) prove $\forall x \in \mathbb{N}$ with $x \geq 2$, $P(x-1) \rightarrow P(x)$.
2. Carefully define the following terms: Proof by Minimum Element Induction Thm, wellordered, big O
The Proof by Minimum Element Induction Theorem says: Let S be a nonempty set of integers. If S has a lower bound, then it has a minimum. Let S be a set of numbers with some ordering $<$. We say that S is well-ordered by $<$ if every nonempty subset of S has a minimum according to $<$. Let a_{n} and b_{n} be sequences. We say that $a_{n}=O\left(b_{n}\right)$ if $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_{0},\left|a_{n}\right| \leq M\left|b_{n}\right|$.
3. Let $x \in \mathbb{R}$. Use cases to prove that $|x-2|+|x-5| \geq 3$.

Case 1: If $x<2$, then $|x-2|+|x-5|=2-x+5-x=7-2 x$. We multiply $x<2$ by -2 to get $-2 x>-4$, and add 7 to get $7-2 x>7-4=3$. Hence $|x-2|+|x-5|=7-2 x>3$.
Case 2: If $2 \leq x \leq 5$, then $|x-2|+|x-5|=x-2+5-x=3 \geq 3$.
Case 3: If $x>5$, then $|x-2|+|x-5|=x-2+x-5=2 x-7$. We multiply $x>5$ by 2 to get $2 x>10$, and add -7 to get $2 x-7>10-7=3$. Hence, $|x-2|+|x-5|=2 x-7>3$.
In all three cases, the desired inequality holds.
4. Prove that $\forall x \in \mathbb{R},\lfloor-x\rfloor=-\lceil x\rceil$.

Let $x \in \mathbb{R}$ be arbitrary. Applying the definitions of ceiling and floor, we get $\lfloor-x\rfloor \leq$ $-x<\lfloor-x\rfloor+1$ and $\lceil x\rceil-1<x \leq\lceil x\rceil$. We multiply the latter by -1 to get $-\lceil x\rceil+1>-x \geq-\lceil x\rceil$. We now have a choice for how to continue.
SOLUTION 1: We combine inequalities to get $\lfloor-x\rfloor \leq-x<-\lceil x\rceil+1$ and $-\lceil x\rceil \leq$ $-x<\lfloor-x\rfloor+1$. Hence $-\lceil x\rceil-1<\lfloor-x\rfloor<-\lceil x\rceil+1$. Since these are integers, by Thm. 1.12, we have $\lfloor-x\rfloor=-\lceil x\rceil$.
SOLUTION 2: Both $\lfloor-x\rfloor$ and $-\lceil x\rceil$ are integers satisfying $n \leq-x<n+1$. Because the floor of any real x is unique (by a theorem proved in class, part of the definition of "floor"), these integers must be equal.
5. Use induction to prove that for all $n \in \mathbb{N},\binom{2 n}{n} \leq 4^{n}$.

Proof by vanilla induction. Base case $n=1:\binom{2 n}{n}=\binom{2}{1}=\frac{2!}{1!1!}=2$, which is less than $4^{n}=4$.

Now, let $n \in \mathbb{N}$ and suppose that $\binom{2 n}{n} \leq 4^{n}$. We have $\binom{2(n+1)}{(n+1)}=\frac{(2 n+2)!}{(n+1)!(n+1)!}=$ $\frac{(2 n+2)(2 n+1)(2 n)!}{(n+1) n!(n+1) n!}=\frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}\binom{2 n}{n}<\frac{(2 n+2)(2 n+2)}{(n+1)(n+1)}\binom{2 n}{n}=\frac{2(n+1) 2(n+1)}{(n+1)(n+1)} 4^{n}=4^{n+1}$. Hence $\binom{2(n+1)}{(n+1)} \leq 4^{n+1}$.
6. Solve the recurrence with initial conditions $a_{0}=1, a_{1}=4$ and relation $a_{n}=3 a_{n-1}-2 a_{n-2}$ ($n \geq 2$).
Our characteristic polynomial is $r^{2}-3 r+2=(r-2)(r-1)$, so the general solution is $a_{n}=A 2^{n}+B 1^{n}=A 2^{n}+B$. We now apply the initial conditions to get $1=a_{0}=A 2^{0}+B=A+B$ and $4=a_{1}=A 2^{1}+B=2 A+B$. We now solve the system $\{A+B=1,2 A+B=4\}$ to get $A=3, B=-2$. Hence the specific solution is $a_{n}=3 \cdot 2^{n}-2$.
7. Consider the nonstandard order \prec on \mathbb{Z} given by $0 \prec 1 \prec-1 \prec 2 \prec-2 \prec 3 \prec \cdots$. The smallest element is 0 , the second smallest is 1 . Find a formula for the $n^{\text {th }}$ smallest element.
The $n^{\text {th }}$ smallest element is $\left\{\begin{array}{ll}n / 2 & n \text { is even } \\ (1-n) / 2 & n \text { is odd }\end{array}\right.$.
One can avoid cases, at the expense of a messier formula, e.g. $\left\lceil\frac{n(-1)^{n}}{2}\right\rceil$ or $(-1)^{n}\left\lfloor\frac{n}{2}\right\rfloor$.
8. Consider the sequence $a_{n}=3 n^{2}+100 n+1$. Prove that $a_{n}=\Theta\left(n^{2}\right)$.

We need to prove both $a_{n}=O\left(n^{2}\right)$ (harder) and $a_{n}=\Omega\left(n^{2}\right)$ (easier).
$a_{n}=O\left(n^{2}\right)$: Take $n_{0}=100, M=5$. Let $n \geq n_{0}=100$. We have $\left|a_{n}\right|=\mid 3 n^{2}+100 n+$ $1\left|=3 n^{2}+100 n+1 \leq 3 n^{2}+n^{2}+n^{2}=5 n^{2}=M\right| b_{n} \mid$.
$a_{n}=\Omega\left(n^{2}\right)$: Take $n_{0}=1, M=1$. Let $n \geq n_{0}=1$. We have $M\left|a_{n}\right|=1\left|3 n^{2}+100 n+1\right|=$ $3 n^{2}+100 n+1 \geq n^{2}=\left|b_{n}\right|$.
9. Prove that $\forall n \in \mathbb{N}_{0}$, the Fibonacci numbers F_{n} satisfy $F_{n}<1.9^{n}$.

Proof by strong induction. We need two base cases: $F_{0}=0<1=1.9^{0}$, and $F_{1}=1<1.9^{1}$.

Now, let $n \in \mathbb{N}_{0}$, and assume that $F_{n}<1.9^{n}$ and $F_{n+1}<1.9^{n+1}$. We have $F_{n+2}=$ $F_{n+1}+F_{n}<1.9^{n+1}+1.9^{n}=1.9^{n}(1.9+1)=1.9^{n}(2.9)<1.9^{n}(3.61)=1.9^{n}(1.9)^{2}=$ 1.9^{n+2}. Hence $F_{n+2}<1.9^{n+2}$.
10. Find a recurrence relation for sequence T_{n} such that the Master Theorem would give $T_{n}=\Theta(\sqrt{n} \log n)$. Describe an algorithm that would satisfy your recurrence relation. The form of the solution can only arise in the "middle c_{n} " case. Hence, $k=d=1 / 2$. Hence $\log _{b} a=1 / 2$ and $c_{n}=\Theta(\sqrt{n})$. One possibility is $a=2, b=4, c_{n}=\sqrt{n}$, which gives $T_{n}=2 T_{n / 4}+\sqrt{n}$. An algorithm that satisfies this recurrence relation would divide the size n problem into four parts, call itself recursively on two of the parts, and have an overhead of \sqrt{n} putting those two results together.

