MATH 245 S20, Exam 2 Solutions

1. Carefully define the following terms: Proof by Cases Theorem, Nonconstructive Existence

Theorem, Proof by Reindexed Induction

The Proof by Cases theorem says: Let p,q be propositions. Suppose there are propo-
sitions ¢y, ¢o, ..., ¢, With ¢y Vo V-V =T. Now, if (pAcy) = q, (pAc) = q, ...,
(p A ck) — q are all true, then p — ¢ is true. The Nonconstructive Existence Theorem
says: If Vo € D, =P(x) = F, then 3x € D, P(z) is true. To prove Vz € N, P(x) by
reindexed induction, we must (a) prove P(1) is true; and (b) prove Vz € N with z > 2,
P(x—1) — P(x).

2. Carefully define the following terms: Proof by Minimum Element Induction Thm, well-
ordered, big O
The Proof by Minimum Element Induction Theorem says: Let S be a nonempty set
of integers. If S has a lower bound, then it has a minimum. Let S be a set of numbers
with some ordering <. We say that S is well-ordered by < if every nonempty subset of
S has a minimum according to <. Let a,, and b,, be sequences. We say that a, = O(b,)
if Ing € N, IM € R, Vn > ng, |a,| < M|by|.

3. Let z € R. Use cases to prove that |z — 2|+ |x — 5| > 3.
Case 1: If z < 2, then |z —2|+|z—5| =2—2+5—2 = 7—2z. We multiply =z < 2 by —2
to get —2x > —4, and add 7 to get 7—2x > 7—4 = 3. Hence |[x—2|+|x—5| = 7—2x > 3.
Case 2: If 2<ax <5, then |z —2|+|r—5|=2—-2+5—x=32>3.

Case 3: If x > 5, then |[x—2|+|z—5| = x—2+2—5 = 2x—7. We multiply x > 5 by 2 to
get 2x > 10, and add —7 to get 20 —7 > 10—7 = 3. Hence, |z —2|+|x—5| =22—-7 > 3.

In all three cases, the desired inequality holds.

4. Prove that Vz € R, |—z] = —[z].
Let x € R be arbitrary. Applying the definitions of ceiling and floor, we get | —z| <
—z < |—z]+ 1 and [z] =1 < & < [z]. We multiply the latter by —1 to get
—[z] +1> —x > —[z]. We now have a choice for how to continue.
SOLUTION 1: We combine inequalities to get |—z| < —z < —[z] + 1 and —[z] <
—x < |—z] 4+ 1. Hence —[z] — 1 < |—x] < —[z] + 1. Since these are integers, by
Thm. 1.12, we have |—x| = —[z].
SOLUTION 2: Both |—z] and —[z] are integers satisfying n < —z < n + 1. Because
the floor of any real z is unique (by a theorem proved in class, part of the definition
of “floor”), these integers must be equal.

5. Use induction to prove that for all n € N, (27?) < 4™

Proof by vanilla induction. Base case n = 1: (2" = (2) = 177 = 2, which is less than
4" = 4.



Now, let n € N and suppose that (2:) < 4" We have (2("“)) = _OndD!
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Solve the recurrence with initial conditions ag = 1, a; = 4 and relation a,, = 3a,_1 —2a,,_»
(n>2).

Our characteristic polynomial is 7 — 3r +2 = (r — 2)(r — 1), so the general solu-
tion is a, = A2" + B1" = A2" + B. We now apply the initial conditions to get
l=ay=A2+B =A+ B and 4 = a; = A2' + B = 2A + B. We now solve the
system {A+ B =1,2A+ B = 4} to get A =3, B = —2. Hence the specific solution is
a, =3-2"— 2.

Consider the nonstandard order < on Z given by 0 < 1 < -1 <2 < -2 <3 < ---.
The smallest element is 0, the second smallest is 1. Find a formula for the n'* smallest
element.

n/2 n is even

The n'* smallest element is ' .
(1-n)/2 nisodd

One can avoid cases, at the expense of a messier formula, e.g. ["(_21)71-‘ or (=1)"|5].

Consider the sequence a,, = 3n* + 100n + 1. Prove that a, = O(n?).

We need to prove both a,, = O(n?) (harder) and a,, = Q(n?) (easier).

a, = O(n?): Take ng = 100, M = 5. Let n > ng = 100. We have |a,| = |3n* + 100n +
1| =3n%+100n + 1 < 3n? + n® + n* = 5n? = M|b,|.

an, = Q(n?): Takeng =1, M = 1. Let n > ny = 1. We have M|a,| = 1|3n*+100n+1| =
302 + 1000 + 1 > n® = |by|.

Prove that Vn € Ny, the Fibonacci numbers F, satisfy F,, < 1.9™.

Proof by strong induction. We need two base cases: Fy = 0 < 1 = 1.9°, and
F=1<19"

Now, let n € Ny, and assume that F), < 1.9" and F,,; < 1.9""!. We have F, ., =
Foo+F, <19 +1.9" = 1.9"(1.9+1) = 1.9"(2.9) < 1.9"(3.61) = 1.9"(1.9)? =
1.9"*2. Hence F,,o < 1.9"+2

Find a recurrence relation for sequence 7, such that the Master Theorem would give
T, = ©(y/nlogn). Describe an algorithm that would satisfy your recurrence relation.
The form of the solution can only arise in the “middle ¢,” case. Hence, k = d = 1/2.
Hence log, a = 1/2 and ¢, = O(y/n). One possibility is a = 2,b = 4, ¢,, = /n, which
gives T,, = 215,54 + v/n. An algorithm that satisfies this recurrence relation would
divide the size n problem into four parts, call itself recursively on two of the parts, and
have an overhead of \/n putting those two results together.



